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Quantum Mechanics of a Macroscopic Variable:
The Phase Difference of a Josephson Junction

JOHN CLARKE, ANDREW N. CLELAND, MicHEL H. DEVORET, DANIEL ESTEVE
b p]
lOHN M. MARTINIS

Experiments to investigate the quantum behavior of a
macroscopic dcgreee:f?g:edom, 2amely the phase differ-
ence across a Josephson tunnel junction, are described.
The experiments involve measurements of the escape rate
of the junction from its zero voltage state. Low tempera-
ture measurements of the escape rate for junctions that
are ecither nearly undamped or moderately damped agree
very closely with ictions for macroscopic quantum
tunneling, with no adjustable parameters. Microwave
spectroscopy reveals quantized energy levels in the poten-
tial well of the junction in excellent agreement with
quantum-mechanical calculations. The system can be re-
garded as a “macroscopic nucleus with wires.”

RE MACROSCOPIC DEGREES OF FREEDOM GOVERNED BY

quantum mechanics? Our everyday experience tells us that a

classical description appears to be entirely adequate. The
trajectory of the center of mass of a billiard ball is predicted
wonderfully well by classical mechanics. Even the Brownian motion
of a tiny speck of dust in a drop of water is a purely classical
phenomenon. Until recently, quantum mechanics manifested itself
at the macroscopic level only through such collective phenomena as
superconductivity, flux quantization, or the Josephson effect. How-
ever, these “macroscopic” effects actually arise from the coherent
superposition of a large number of microscopic variables each
governed by quantum mechanics. Thus, for example, the current
through a Josephson tunnel junction and the phase difference across
it are normally treated as classical variables. As Leggett (I) has
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emphasized, one must distinguish carefully between macroscopic
quantum phenomena originating in the superposition of a large
number of microscopic variables and those displayed by a single
macroscopic degree of freedom. It is the latter that we discuss in this
article.

Our usual observations on a billiard ball or Brownian particle
reveal classical behavior because Planck’s constant % is so tiny.
However, at least in principle there is nothing to prevent us from
designing an experiment in which these objects are quantum
mechanical. To do so we have to satisfy two criteria: (i) the thermal
energy must be small compared with the separation of the quantized
energy levels, and (ii) the macroscopic degree of freedom must be
sufficiently decoupled from all other degrees of freedom if the
lifetime of the quantum states is to be longer than the characteristic
time scale of the system (I). To illustrate the application of these
criteria, following Leggett (I) we consider a simple harmonic
oscillator consisting of an inductor L connected in parallel with a
capacitor C. The flux @ in the inductor and charge g4 on the capacitor
are macroscopic conjugate variables. Observations on the oscillator
are made by means of leads that unavoidably couple it to the
environment. The dissipation so introduced is represented by a
resistor R in parallel with L and C. The natural angular frequency of
oscillation is wy = (LC)™2, the impedance at the resonance fre-
quency is Zo = (L/C)"2, and the quality factor (ratio of stored
energy to energy dissipated in one oscillation) is Q = woCR = R/Z,.
To observe quantum effects we thus require (i) fiwo >> kgT, where
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Fig. 1. (a) Schematic a b
representation and (b) i'
circuit description of
Josephson tunnel junc-
tion.

T is the temperature of the system, and (ii) R >> Z,. To give a
numerical example, we assume that we are willing to cool our system
to 10 mK, and that the leads coupled to the junction have a
characteristic impedance Z of 50 ohms. To ensure the oscillator is
comfortably in the quantum limit we impose the constraints
w9 > 10kgT/% and Z; > 10 Z,, and find wy/2w > 2 GHz, L < 350
pH, and C < 15 pF. Thus, for this system one can hope to challenge
the smallness of #.

Even though we have been rather conservative in our constraints,
we see that the required components are “off the shelf.” Thus, it
seems straightforward to construct a macroscopic oscillator exhibit-
ing quantum behavior. Unfortunately, it is not nearly so straightfor-
ward to demonstrate that the oscillator is behaving quantum
mechanically. For example, transitions between adjacent energy
levels would always involve quanta of frequency wg, which is of
course precisely the frequency one observes classically: the simple
harmonic oscillator is in the correspondence limit (2) for all
quantum numbers. Alternatively, one could attempt to observe the
zero-point motion of the ground state, a clear signature of quantum
behavior. This is, however, an extremely difficult experiment requir-
ing a quantum-limited amplifier.

Fortunately, one can “evade the correspondence limit” by using a
Josephson tunnel junction (3). The macroscopic degree of freedom
is the difference 8 between the phases of the condensates of Cooper
pairs in the superconductors on cither side of the tunnel barrier. As
we shall see later, in the classical limit the junction behaves as a
nonlinear inductor shunted by a capacitor. The anharmonicity of the
oscillator resulting from the nonlinearity has two important conse-
quences enabling us to observe the quantum behavior of a macro-
scopic variable. First, one can demonstrate the existence of a wave
packet associated with & by observing the decay of the ground state
by “macroscopic quantum tunneling.” Second, the separation of
adjacent energy levels decreases with increasing quantum number so
that one can demonstrate energy quantization spectroscopically.

Dynamics of a Josephson Junction

A Josephson tunnel junction (Fig. 1a) consists of two supercon-
ductors separated by a thin insulating barrier (3). Cooper pairs, that
is, electrons of equal and opposite momenta and having paired
spins, can tunnel through the barrier with no voltage drop; this flow
of pairs constitutes a supercurrent. One can pass a static supercur-
rent through the junction up to a maximum value Iy, known as the
critical current. The junction (Fig. 1b) has a self-capacitance C and is
shunted by a resistance R that often arises from external circuitry, as
we shall see later. When the external current I is increased from zero
the phase difference across the junction is given by the Josephson
current-phase relation I = Ipsind; when I exceeds Iy, a voltage is
developed across the junction and 8 evolves with time according to
the Josephson voltage-frequency relation § = 2wV/®,, where
@y = h/2e is the flux quantum. If we set the sum of the current
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flowing through the three elements of the j juncnon in Fig. 1b equal
to I and eliminate terms in V in favor of §, we arrive at the following
classical equation of motion for the phase difference:

Dy \2 - Dy auE) _
C(Z‘n’) 8+R(2«) 8+ o M
The term In(2) represents the Nyquist current noise generated by

the resistor R at temperature T, and (3)
U®) = — (Iy®y/2m)[cosd + (I/1,)d]

N(t)

)

One achieves great insight into the dynamics of the junction by
realizing that Eq. 1 is identical to the classical equation of motion of
the coordinate 3 of a particle with mass C(®¢/27)* moving in the
tilted washboard potential U(8) shown in Fig. 2. The average slope
of the washboard is proportional to —I/Iy. For I < Iy the potential
has relative minima, and the particle can be trapped in one of them
(Fig. 2a). However, although the average value (3) and hence the
time-averaged voltage V across the junction are zero in this state, it
is important to realize that the particle is not stationary, but rather
that it oscillates at the bottom of the well at the so-called plasma
frequency (3)

wp = (27ly/®eC) (1 — (ITp)*]™ 3)

If we increase the bias current, eventually the particle will escape
from the well and propagate down the washboard (Fig. 2b); in this
state both 8 and V are nonzero.

The exact correspondence between the motion of the particle and
the dynamics of 3 is very useful, since it provides a heuristic model
with which one can understand the dynamics of the junction. As it is
more straightforward to discuss the behavior of this fictitious
particle than the motion of 3, we shall do so freely in the remainder
of this article, which is concerned with the processes by which the
particle escapes from the well (that is, the junction makes a
transition from the zero-voltage state to the nonzero-voltage state).
To aid this discussion, in Fig. 2, c and d, we show a single potential
well. In the experiments to be described I is very close to I and the
potential is of the form A8” — B3® (4, B > 0). In this approxima-
tion the barrier height is (4)

U = [2(2)"2I,®y/37](1 — Illp)*? 4)

The damping of the oscillations by the resistance R (assumed to be
linear) is represented by

Q= wRC ®)

In this classical description, the particle can escape from the well
as a result of thermal activation: the fluctuating thermal energy of
the particle eventually exceeds AU and the particle escapes over the
top of the barrier. The escape rate for thermal activation is given by
the Kramers’ result (5)

T(T) = ay(wp/2mw)exp(—AU/kgT) (6)

where the prefactor 4, is of order unity (6). The thermal energy of
the particle arises from the noise current In(2).

In thermal activation, the system is entirely classical and is
described by a classical equation of motion representing a point
particle with a continuous range of energy (Fig. 2c). The phase
difference 3 is a classical variable. If we lower the temperature, Eq. 1
is no longer valid since the dynamics of the particle must be
described quantum mechanically. The crossover from the classical to
the quantum mechanical description occurs at a temperature (7)
Ter = hoy/2wkg (for Q >> 1). Below this temperature, the phase
difference 8 must be represented by a quantum mechanical operator,
rather than treated as a classical variable. The position of the particle
is now described by a wave packet, y(3), and the energy of the
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Fig. 2. Tilted wash-
board analog of Jo-
sephson tunnel junc-
tion: (&) stationary
state (V=0) for
I<I, and (b) run-
ning state (V # 0) for
I> I, In the station-
ary state in the classical
regime (€) the particle
is point-like with a c d
continuous energy
range, whereas in (d)
the ground state o(3)
of the particle is de-
scribed by a wave
packet and the energy
is quantized into levels. 5

u(d)
4

u(s)

Vo(8)

particle can assume only discrete values corresponding to eigenstates
of the system (Fig. 2d). The leakage of {(8) under the barrier
enables the particle to escape from the well by macroscopic quantum
tunneling (MQT) through the barrier (I, 8, 9).

We now emphasize the distinction between Josephson tunneling
and macroscopic quantum tunneling. In Josephson tunneling the
passage of each Cooper pair is controlled by the difference 8 in the
phase of the pair across the barrier. Since the condensate in any piece
of superconductor is characterized by a single phase, the phase
difference 3 for all pairs must be the same. Thus, 8 is “macroscopic”
in the sense that it is the single variable that completely specifies the
state of the junction, that is, of all the Cooper pairs. In the process of
macroscopic quantum tunneling it is the particle associated with the
phase difference 3 that tunnels as opposed to the tunneling of
individual Cooper pairs that occurs in Josephson tunneling. Thus,
the demonstration that MQT takes place implies that 3 is a quantum
variable, that is, that one must represent it by a wave packet. By
contrast, although & represents the phase difference between two
macroscopic quantum states, in the majority of experiments on
Josephson tunneling it is nonetheless a classical variable, describable
by purely classical equations.

The first calculation of the tunneling rate was made by Ivan-
chenko and Zilberman (8) for a junction at T =0 with no
dissipation. A major step forward was made by Caldeira and Leggett
(9) who calculated the reduction in the tunneling rate when a linear
damping resistor was connected across the junction. To first order in
1/Q at T = 0 they predicted the escape rate to be

7.2AU \ |2 op AU 0.87
Iq(0) = [12011'( oy )] - cxp[ 7.2 ™ (1 + 0 )]

™

The reduction of I'q(0) by dissipation arises from a narrowing of the
wave packet. In the limit Q — «, T'q(0) reduces to the Wentzel-
Kramer-Brillouin (WKB) result (2) obtained by Ivanchenko and
ZilPberman (8). Subsequently, many other theoretical papers have
appeared; the reviews listed in (10) give a comprehensive summary.
The theory has been extended to nonzero temperatures (7, 11-16):
when T ~ T, both MQT and thermal activation contribute to the
escape process. There is also a large body of literature (10) con-
cerned with a related system, namely, a superconducting loop
interrupted by a single Josephson junction, which exhibits similar
behavior to that described above.

Detailed measurements of thermal escape in the classical regime
T >> T, were made by Jackel ¢t 4l. (17) and Fulton and Dunkle-
berger (4) on a junction in a superconducting loop and on a current-
biased junction, respectively. The first attempts to measure MQT
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were made by Ouboter and co-workers (18), Voss and Webb (19),
and Jackel ez al. (20). The results of these experiments and of several
others (21-23) agreed qualitatively with theory in that the escape
rate tended to become constant as the temperature was lowered and
tended to be reduced as the dissipation was increased. In these
experiments, a persistent difficulty has been the lack of knowledge of
the junction parameters in the relevant microwave frequency range.
However, Schwartz et al. (24) performed experiments on a loop
containing a junction shunted with an external resistor and made
separate measurements of the relevant parameters. In the over-
damped limit (Q << 1) of their experiment, a recent reanalysis of
their results shows them to be in quite good agreement with theory
(25).

In the present work, we used classical phenomena to measure the
parameters Iy, C, and R in situ, so that we are able to compare
experiment and theory in the quantum regime with no adjustable
parameters (26). A further important consideration is the elimina-
tion of spurious noise from the junction. We address both issues in
the next two sections.

Experimental Details

We deposited tunnel junctions on 10 by 10 mm? oxidized silicon
chips using standard photolithographic processing. The base elec-
trode consisted of a niobium film typically 10 pm wide and 0.2 pm
thick; after oxidizing the film we deposited a PbIn counterelectrode
at right angles to it. The junction was attached to a mount in therthal
contact with the mixing chamber of a dilution refrigerator capable of
reaching about 20 mK (Fig. 3).

A series of low-pass filters eliminated thermal noise from the
measuring apparatus and spurious signals such as those from radio
stations, while allowing us to interrogate the junction at low
frequencies. These filters were of two kinds: radio-frequency filters
consisting of resistors or inductors and capacitors, and custom-made
microwave filters. The microwave filters consisted of a spiral of
insulated wire inside a copper tube filled with copper powder with a
grain size of about 30 pum. Since each grain is insulated from its
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Flg. 3. Schematic drawing of apparatus.
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neighbors by an oxide layer, the effective surface area of the copper is
enormous, producing substantal skin effect losses. The chain of
filters provided an overall attenuation of more than 200 dB over the
frequency range from 0.1 to 12 GHz. The last stage of filtering was
engineered with particular care since it imposed the damping of the
junction and hence determined Q. The junction was mounted as
close as possible to the end of the filter to ensure that the impedance
discontinuity between the junction and the line occurred in a
distance small compared with the wavelength at the plasma frequen-
cy. Thus, the impedance attached to the junction behaved approxi-
mately as a parallel combination of a resistor and a capacitor.

To ascertain the escape rate I' we applied a current ramp (Fig. 3)
to the junction, and measured the value of current at which the
appearance of a voltage signified the escape of the particle from the
well. This value was digitized and transmitted to a computer outside
the screened room surrounding the refrigerator by an optical fiber
link. This measurement was repeated a large number of times,
typically 10°. Since the escape process is stochastic, one obtains a
histogram representing the escape probability versus bias current.
From this distribution it is straightforward (4) to derive the escape
rate as a function of current, I'(I).

Determination of Junction Parameters in the
Classical Regime

We now discuss the measurement of the parameters I, C, and R
in the classical regime. We determined the parameters w, and Q
using a technique based on a phenomenon we called resonant
activation (27). The phenomenon is of interest in its own right in
that it describes the escape of a Brownian particle from a potential
well under the influence of a weak, sinusoidal force. Resonant
activation involves the enhancement of the escape rate by a micro-
wave current applied to the junction. When the microwave frequen-
¢y is in the vicinity of wp, the particle is raised to a state of higher
energy, and its probability of activation over the barrier is increased.
The enhancement in the escape rate is manifested as an asymmetric
peak that falls relatively rapidly on the high frequency side and has a
long tail on the low frequency side. The asymmetry is a consequence
of the anharmonicity of the potential well. With the aid of numerical
simulations (27), we can determine wy(I) and Q(I) from this
resonance.

To determine I, we measured I'(0) in the classical regime in the
absence of microwaves. As is evident from Eqs. 4 and 6 a plot of the
experimentally determined quantity {€n[wy(I)/2nwl(I)]}** versus I
should yield a straight line with slope scaling as 72> that intersects
the current axis very close to Iy. After correcting for the departure of
a, from unity (6) and for the approximation made in Eq. 4, we find
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that the values of Ij obtained in the temperature range 50 to 800
mK are in very good agreement. We also find good agreement
between the temperatures inferred from the slope of the data and
our thermometers.

Given I and wy(I) we can infer C using Eq. 3 and hence R from
Eq. 5. The values of I, C, and R, determined from purely classical
experiments, are summarized in Table 1. The error in I is the
standard deviation arising from statistical uncertainties. The quoted
errors in C and R, which arise from the fact that these quantities vary
with bias current and thus with frequency, are a measure of the
departure of the junction and its leads from the simple lumped-
circuit model shown in Fig. 1. The fractional error in C is small
because the self-capacitance of the junction was chosen to be as large
as possible to minimize the effects of the leads. The fractional error
in R is large, but in this particular experiment we wished to
demonstrate only that Q was large enough for the effect of
dissipation on Iy to be negligible. We note that the measured value
of R is at least one order of magnitude less than the junction
resistance determined at low voltages from the static I-V characteris-
tic; indicating that the dissipation is almost completely determined
by the bias circuitry.

Macroscopic Quantum Tunneling

We have found it convenient to express our escape rates in both
classical and quantum regimes in terms of an escape temperature
Tesc defined through the relation

I = (wp/2m)exp(— AUlksTesc) ®)
In the classical regime Ty is very nearly equal to T with a small
correction due to the departure of 4, from unity. In the quantum
regime T, takes a temperature-independent value that can be
calculated exactly by comparing Eqs. 7 and 8. All of the parameters
entering T are measured experimentally.
~ We have made extensive measurements of I'(T) as a function of
bias current over the temperature range from 19 to 800 mK. The
derived values of T are plotted versus T in Fig. 4. Above about
100 mK, T, follows the thermal prediction rather accurately. At
lower temperatures T, flattens off to a temperature-independent
value of 37.4 = 4 mK, which is in good agreement with the
Caldeira-Leggett T = 0 prediction of 36.0 = 1.4 mK, with no
adjustable parameters. The error in the experimental value is due
primarily to the uncertainty in Iy; the error in the predicted value is
due primarily to the uncertainty in C. The errors include possible
systematic errors in the estimates of I and C, respectively. These
values of Ty imply that the measured value of I'(0) is within a
factor of 2 of the predicted value. We note that the contribution of
the damping to the predicted value of Ty is —1.5 mK so that given

Table 1. Measured parameters for a shunted and unshunted Josephson
tunnel junction, with experimental (T'¢,c) and predicted (T'E) escape
temperatures at T = 0 extrapolated from results at higher temperatures. The
predicted values of T2, for Q = o are also included for comparison.

Quantity Unshunted junction Shunted junction
I, (nA) 9.489 = 0.007 24.873 = 0.004
C (pF) 635 + 04 428 +0.34
R (ohms) 190 =100 93 +0.1

30 + 15 1.77 = 0.07

T¢,. (mK) 374 = 40 44 *17
T®,. (mK) 360 * 14 425 =21
T2 (Q = ) 375 = 14 69 +3
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Fig. 5. T, versus T for shunted junction (configuration shown in inset).
Solid curve is theory, dashed line is classical prediction Tesc = 0.98T. The
crossover temperature T, for this junction and T for Q = = are indicated
by arrows. Error bars are as in Fig. 4.

the combined experimental and theoretical uncertainties the effect of
dissipation on I'¢(0) is negligible. _

Although the measured low-temperature values of Ty are in
good agreement with predictions, nonetheless one should demon-
strate that the flattening of T as T is lowered is not due to an
unknown, spurious noise source. In other words, we wish to show
that the temperature “seen” by the junction is not significantly
higher than that recorded by our thermometers. We carried out a
self-check by applying a magnetic field (Fig. 3) to reduce I and
hence v, (see Eq. 3), thereby lowering T to about 15 mK. The
measured values of T are close to the classical prediction, indicat-
ing that the flattening of T, for the higher value of critical current
did not arise from spurious noise sources.

Thus, we have demonstrated the correctness of the prediction for
T'4(0) (Eq. 7) for the undamped case. To investigate the effects of
dissipation on I'q(0), we fabricated a series of junctions with a
metallic shunt (28) deposited directly on the chip (inset, Fig. 5). The
shunt was connected to a 1-mm? cooling fin to reduce the effects of
heating after the junction switched to the V+# 0 regime. After
depositing and patterning the CuAu and Nb films we deposited an
insulating layer of SiO. We then oxidized the Nb film and deposited
a PbIn counterelectrode that also provided a superconducting
groundplane to reduce the self-inductance of the shunt to a negligi-
ble level. The resistance of the shunt was determined from the
measured current-voltage characteristics, and is therefore known to
relatively high accuracy; C and I, were determined as described
carlier.

The measured values of T,y for one such junction are plotted
versus T in Fig. 5. The solid line showing the predictions of the
theory with no adjustable parameters is in good agreement over the
entire temperature range. In particular, Tesc has been reduced
substantially from the value expected for the same parameters with
Q = = (see Fig. 5 and Table 1). If one expresses the results in terms
of escape rates, at a particular bias current of 24.71 pA the measured
value of I'(0) is 1.2757% X 10* sec™! compared with a predicted value
of 0.62*93} x 10* sec™!; the experimental uncertainty is due to
counting statistics, whereas the theoretical uncertainty comes from
systematic uncertainties in the junction parameters. This rate is more
than two orders of magnitude lower than that predicted for a
juncion with the same parameters but no damping,
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(1.9 £ 0.9) x 10° sec™!. Thus, the observed tunneling rate has
been greatly reduced by dissipation to a value in excellent agreement
with theory.

For 0 < T < T, theory (12) predicts that ¢n[I'(T)/T'(0)] should
scale as T2. A more detailed analysis of our data (28) shows the
expected 7> dependence, as has been shown previously by Wash-
burn et al. (23) and Schwartz ¢t al. (24). The enhancement of I'(T)
as T is increased arises from the modulation of the height of the
potential barrier by thermal noise. For T, < T < 3T, the escape
rate is predicted to exceed the classical prediction because of the
persistence of MQT into this temperature range as an additional
escape process. An analysis of the data (28) shows reasonable
agreement with predictions (16).

Quantized Energy Levels

In the quantum limit, we expect the energy in the potential well to
be quantized, as indicated in Fig. 2d. We investigated this quantiza-
tion spectroscopically by measuring the escape rate from the zero-
voltage state of a high-Q junction in the presence of a microwave
current. Since the microwaves induce transitions from one state to
another of higher energy, and the escape rate out of the well
increases when the population of higher energy states increases, we
expect a resonant enhancement of the escape rate when the micro-
wave photon energy corresponds to an energy-level spacing. In the
experiment we varied the energy-level spacings by varying the bias
current while keeping the microwave frequency /2w and power P
fixed. The anharmonic nature of the potential causes the energy-
level spacings to decrease with increasing energy, so that each
resonance corresponding to the transition between a pair of neigh-
boring energy levels should occur at a distinct value of current.

In Fig. 6a we show the change in escape rate [I'(P) — I'(0)]/T'(0)
versus bias current for an 80 by 10 pm? junction in the presence of
2.0 GHz microwaves. For the range of current shown there were 5
or 6 energy levels in the well, and the temperature was high enough
(ksT/RQ = 0.29) for the thermal population of the lower excited
states to be substantial. The damping of this junction was very low,
with Q estimated to be about 75. In Fig. 6a we observe three peaks,
indicating that the escape rate is resonantly enhanced at certain
values of the bias current. These resonances correspond to the
transitions shown in the inset. This behavior is in striking contrast to
the single, asymmetric resonance observed in the classical regime.

To compare the positions of the resonances with theory we solved
the Schrodinger equation numerically to find the energy levels,
using values of Iy and C obtained in the classical regime. From these
calculations we obtained the energy spacings corresponding to the
0— 1,1 — 2, and 2 — 3 transitions as a function of bias current, as
indicated in Fig. 6b. The intersections of these curves with the
horizontal line corresponding to the microwave frequency of 2.0
GHz predict the bias currents at which the peaks should occur. The
dotted curves on cither side of the 0— 1 curve indicate the
uncertainty: the error in current arises from the uncertainty in I
(and hence in Iy — I). A given error in I, shifts the three curves by
the same amount. We see that the separations of the measured peaks
are in excellent agreement with predictions. The absolute positions
of the peaks are shifted along the current axis by about 2 parts in
3000, an error comparable with the indicated uncertainty.

A theory (26) for the line shape predicts that the widths of the
peaks should be in the ratio 1: 3:5 forthe0 > 1,1 —>2,and 2 —» 3
transitions. This prediction is quite well satisfied experimentally
with Q = 75. )

Experiments (26) on other junctions have shown that the position
of the peak corresponding to the 0 — 1 transition has the correct
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dependence on microwave frequency. Resonances corresponding to
the 0— 2 and 1 — 3 transitions have also been observed. These
would be strictly forbidden for a simple harmonic oscillator, but are
allowed for a quadratic + cubic potential (2). Finally, Fig. 7 shows
the evolution from quantum to classical behavior as the ratio
kgT/hQ) is increased. At the lowest temperature (curve c) we
observe a single, Lorentzian-shaped resonance corresponding to the
0 — 1 transiton. At the intermediate temperature (curve b), a
shoulder corresponding to the 1 — 2 transition appears as the
thermal population of the first excited state becomes significant. At
the highest temperature (curve a), the resonance is broad and
asymmetric: there are several closely spaced levels in the well with
substantial thermal population, and the individual transitions over-
lap to form a continuous response that is reminiscent of classical
resonant activation.

Concluding Remarks

The experiments described above provide overwhelming evidence
that the phase difference 8 is a quantum variable. The measured rates
of quantum tunneling of this macroscopic variable are in excellent
agreement with predictions (with no adjustable parameters) both
for the case where damping is negligible and for the case where the
rate is reduced by a factor of about 300 by damping. These
experiments show that the particle in the well is not point-like but
must be described by a wave packet. The excellent agreement
between experiment and theory establishes the correctness not only
of the exponent of Eq. 7 but also of the prefactor, thereby
vindicating the Caldeira-Legget treatment of dissipation. Further-
more, microwave spectroscopy experiments demonstrate the exis-
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tence of quantized energy levels in the well, with energies in very
good agreement with predictions.

Thus, our macroscopic anharmonic oscillator, namely, a Joseph-
son junction, exhibits quantum behavior. This result shows that it is
indeed possible, given enough filters and shields, to isolate a single
degree of freedom in an object “big enough to get one’s grubby
fingers on” from all other degrees of freedom sufficiently well to
observe the quantum behavior of that degree of freedom. Our
system behaves very much as a “macroscopic nucleus,” with quan-
tized energy levels and a decay process (MQT) that is closely
analogous to a-decay in a heavy atomic nucleus: the particle is
initially in a metastable bound state and tunnels out into a continu-
um of states. There is a major difference, however, in that we are free
to design and fabricate junctions with a wide range of parameters.
Furthermore, for a given junction we can control its properties by
varying I and I, (through an applied magnetic field). Thus, one can
explore new superconducting circuits with a view both to potential
device applications and to the possibility of building exotic “macro-
scopic nuclei with wires” that would display new quantum phenom-
ena with no equivalents in the microscopic world.
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